Quantifying Climate Feedbacks from Abrupt Changes in High-Latitude Trace-Gas Emissions Xiang Gao¹, Adam C Schlosser¹, Katey Walter², David Kicklighter³, Qianlai Zhuang⁴, and Chris E Forest⁵ ¹MIT Joint Program on the Science and Policy of Global Change; ²University of Alaska; ³Marine Biological Laboratory; ⁴Purdue University; ⁵Penn State University <u>Tested Hypothesis</u>: There exists a climate warming threshold beyond which permafrost degradation becomes widespread and thus instigates sharp increases in methane emissions (via thermokarst lakes and/or wetland expansion). These would outweigh any increased uptake of carbon (e.g. from peatlands) and would result in a strong, positive feedback to global climate warming. Objective: Quantify the potential for threshold changes in natural emission rate of trace gases, particularly methane and carbon dioxide, from pan-arctic terrestrial systems under the spectrum of anthropogenically forced climate warming, and the extent to which these emissions provide a feedback.